Background:
- Emotion regulation is the adaptive ability to modulate one’s own affect to achieve desirable social, cognitive, and environmental outcomes (Eisenberg & Spinrad, 2004; Graziano et al., 2007).
- Evidence suggests that emotion regulation can impact cognition, particularly memory, and vice versa (McGaugh, 2018; Pessoa, 2018).
- These relations may arise due to overlapping neural substrates, as the hippocampus and amygdala play pivotal roles in both emotion and cognition, as well as their interaction (Pessoa, 2010; Phelps, 2004).
- However, these links are under-investigated in development.
- A recent paper, we reported that empathic responding was related to hippocampal, but not amygdala volumes in young children (Stern et al., in press).
- Both memory and emotion regulation were proposed to be possible mechanisms linking empathic responding with hippocampal volume.

Present Study:
- The goal of this study was to explore relations among parent-reported emotion regulation, memory, hippocampal and amygdala volumes in typically developing young children.

Methods:
- Participants: 85 participants (46 male) ages 4-8 years (M = 6.28, SD = 1.06) who provided complete emotion regulation, memory, and neuroimaging data (n = 60, 30 male) were recruited from a larger study on memory development (Riggins et al., 2018).
- Measures:
 - Parents reported their child’s ability to regulate emotion using the Emotion Regulation Checklist (ERC; Shields & Cicchetti, 1997).
 - 24 items split across 2 subscales:
 - Emotional Regulation (ER; 8 items), ex.: “Responds positively to neutral or friendly overtures by peers.”
 - Lability/Negativity (L/N; 15 items); ex.: “Is easily frustrated.”
 - Items were scored on a 4-point Likert-type scale ranging from “never” to “almost always”.
 - Memory was assessed via multiple measures [adapted from literature]:
 - Primacy Discrimination (Matthews & Fouard, 1970).
 - Temporal Order Recall (Bauer et al., 2013).
 - Source Memory Task (Drummey & Newcorn, 2002).
 - Magnetic resonance imaging (MRI) conducted to provide brain region volumes:
 - A standard resolution (9mm³), T1-weighted whole brain structural scan was acquired during neuroimaging and processed using FreeSurfer (v5.3).
 - Hippocampal and amygdala volumes in left and right hemisphere were obtained, along with gray matter volume.
 - Hippocampus was divided into subregions (head, body, and tail).

Results:
- Table 1: Bivariate correlations between children’s emotion regulation, memory, brain volumes, and covariates.
 - Most notable correlations were found between emotion regulation and memory task performance.
 - Positive correlations between ER and memory task performance approached significance, specifically for source memory task.
 - Negative correlations were present but failed to meet traditional levels of significance.

Discussion:
- Findings:
 - Emotion regulation, as measured by parent-reported ER and L/N, was associated with hippocampal volumes in typically developing young children.
 - Interestingly, the direction of L/N and hippocampal volume associations varied across different hippocampal subregions; specifically, significant associations were predominantly within right hippocampus subregions.
 - Left hippocampus may be more involved in autobiographical memory recall (Burgos et al., 2002).
- Relations between parent-reported emotion regulation and memory performance were present but failed to meet traditional levels of significance.
- Memory task performance was positively associated with hippocampus subregion volumes, but not amygdala volume.
- Possibly the result of immaturity or reduced neoplasticity; brain-memory links could occur along many pathways and be less specialized in young children.
- Overall consistent with Stern et al. (in press) which found similar associations between empathy and hippocampus volumes but not amygdala volumes.

Limitations:
- High SES sample, emotion regulation may be less impactful (Troy et al., 2017).
- Small sample size due to incomplete participant data.

Future Directions:
- Compare memory performance and brain region volumes/maturations in a sample encompassing adults and children.
- Use memory tasks covering a more diverse span of memory types (e.g., autobiographical memory).
- Further investigate relations between hippocampus and amygdala volumes, memory, emotion regulation, and empathic responding.

Acknowledgements:
The authors would like to thank the families that participated in this research study and to the Neurocognitive Development Lab for their assistance with data collection.

Support for this research was provided by NICHD under Grant HD075185 (TR).

For questions or comments, please contact: bweinberg0928@gmail.com

Selected References:
Posey, L. (2010). Emotion and cognition and the amygdala. Trends in “what is it” to “what’s to be done.”